

			$\overline{}$	$\overline{}$					
			- 1				 		
Dam Ma	1 1	- 1	- 1			1		 100	63.5
Reg. No.:		- 1	- 1					1.9	10.0
								 -	

Question Paper Code: 40066

B.E. DEGREE EXAMINATION, APRIL/MAY 2018

Second Semester

Bio Medical Engineering

PH 8253 – PHYSICS FOR ELECTRONICS ENGINEERING

(Common to: Computer and Communication Engineering/Electrical and Electronics Engineering/Electronics and Communication Engineering/Electronics and Instrumentation Engineering/Electronics and Telecommunication Engineering/Instrumentation and Control Engineering/Medical Electronics Engineering)

(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Distinguish between Mean free path and Collision time.
- 2. Define density of energy states.
- 3. What are n-type and p-type semiconductors? Give examples.
- 4. Distinguish between Ohmic and Schottky contacts.
- 5. Define the terms intensity of magnetization and flux density.
- 6. Mention the energies involved in origin of domains in ferromagnetic material.
- 7. What is recombination process in semiconductors?
- 8. List out any four advantages of LED in electronic display.
- 9. Define the term quantum well and quantum wire.
- 10. What is spintronics?

11. a) Deduce mathematical expressions for electrical conductivity and thermal conductivity of a conducting material and hence obtain Wiedemann-Franz law.

(OR)

- b) Explain the band theory of solids in detail and classify solids into conductors, semiconductors and insulators with neat diagram.
- 12. a) Write a note on carrier transport in n-type and p-type semiconductors.

(OR)

- b) Explain with necessary theory the Hall Effect and the experimental method to determine the electrical conductivity of a semiconductor. Explain any four applications.
- 13. a) What are ferrites? Describe the different types of ferrites structure with suitable diagrams and mention its applications.

(OR)

- b) Describe the working of magnetic hard disc based on GMR sensor. Mention its advantages and disadvantages.
- 14. a) Explain absorption and emission of light, in metals, insulators and semiconductors.

(OR)

- b) Describe in detail, the principle construction and the working of OLED with a neat diagram.
- 15. a) Discuss in detail quantum confinement and quantum structures in nano materials.

(OR)

b) Explain the synthesis mechanism and physical properties of CNTs with a neat sketch and mention its application.